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ABSTRACT  
 
The classical ways to monitor traffic density and velocity depend on local measurements from induction loops and other on site 
instruments. This information does not give the whole picture. In order to obtain precise knowledge about the traffic flow of a large area, 
only airborne cameras or cameras positioned at very high locations (towers, balloons, etc.) can give an up-to-date image of all streets 
covered. To be able to determine precise velocities and other parameters from an image time series, exact georeferencing is one of the 
first requirements for the acquired image data. The method presented here for determining several traffic parameters for single vehicles 
and vehicle groups involves recording and evaluating a number of digital or analog aerial images from high altitude and with a large total 
field of view. Investigations involving visual and automatic interpretation of the images are described. The recording frequency of the 
individual images should be at least 1/3 Hz, but is preferably 2 Hz or more, especially for automatic tracking. Since the moving vehicles 
are at different locations in the subsequent images, it is possible to derive their velocity, vehicle type as well as acceleration (given at 
least three images). This allows capture of the immediate traffic dynamics for the recording area in considerable detail over a large 
region. The accuracy and possibilities of the method are analyzed and presented, as well as the integration of the results into a GIS 
concept for traffic monitoring, using a street data base. The traffic data obtained from induction loops or other local instruments can be 
checked with the help of this procedure and local traffic anomalies can be precisely identified and studied. The paper shows how the 
image data are acquired processed and evaluated and how this methodology can be used for traffic monitoring. 
 
 

1. INTRODUCTION 
 

Traffic research and planning requires a vast quantity of detailed 
information about traffic behavior. Empirical studies, 
measurements, modeling attempts and simulation programs are 
accordingly numerous and diverse. The challenge is to develop 
robust methods for predicting, visualizing and modeling complex 
traffic events (Brockfeld et al. 2002). Only on the basis of reliable 
data can the simulation, control and planning of traffic systems be 
optimized and thereby contribute to increase the capacity of the 
relevant infrastructure, reducing emissions, and increasing safety. 

Merely equipping the streets with conventional stationary 
measurement systems such as induction loops, radar sensors or 
cameras will not provide an adequate supply of suitable data. The 
challenge is to develop innovative solutions which augment 
existing individual measurement sites, thereby closing the gaps in 
the traffic picture. Current traffic researchers are counting on so-
called large area data collection to achieve a considerably 
improved data basis. In addition to new approaches currently 
under discussion for recording data by means of mobile 
measurements units which flow with the traffic (floating car data, 
Schaefer et al 2004), remote sensing measurement techniques 
have a high potential for large area traffic data collection.  
 
Especially in areas beyond city and town limits it is difficult to 
obtain a complete picture of the traffic over a wide area. On 
German freeways and national roads numerous accident-prone 
sites have been identified for which the precise cause of accidents 
is not well known or adequately documented. It is also important 
to know how traffic jams develop and how vehicle velocity 

reduces at the tail end of a jam or response to speed limits. 
Stationary camera systems relatively near the ground are not 
useful for rigorous observation, since detailed analysis of the 
traffic situation is only possible within a small area of about 100 
meters. For larger areas, relevant parameters such as vehicle type, 
distance between vehicles and velocities cannot be recorded 
because of significant shadowing effects.  
 
The advantage of satellites or aircraft is that they can record a 
large area at once. However, because of their orbits, satellites can 
only provide individual images of a particular area. A return flight 
over the same area is only possible after the lapse of several days, 
the actual interval depending on the particular orbit. Continuous 
observation of traffic in a particular location from a geostationary 
orbit at 36,000 km altitude is not possible because the spatial 
resolution which can be achieved from that altitude is too low. If 
traffic is to be analyzed with the help of satellites it is necessary to 
record the situation on typical days and times and independent of 
the weather. With the upcoming German radar satellite TerraSAR-
X it will be possible for the first time to record traffic situations 
independently of weather and daylight (Runge et al. 2004). 
 
The usefulness of aircraft optical data both from the visible (Stilla 
et al. 2004, Toth et al. 2004) and thermal infrared (Ernst et al. 
2003, Hinz 2004) ranges for vehicle detection has been studied 
using many different approaches. However, there are not many 
investigations of optical time series recorded by aircraft or from 
very high positions and with a large field of view (Mirchandani et 
al. 2002, Pötzsch 2005). Large area successive imaging at 
intervals of seconds is, however, possible with airborne sensors. 
Parameters relevant for traffic such as individual vehicle and 



vehicle group velocities, vehicle type, distance and traffic density 
can be derived from such data.  
 
With a time series acquired over a long time period it is possible 
to record the entire traffic history for a given area and to analyze, 
for example, overtaking maneuvers, merge and exit behavior, as 
well as traffic jams dynamically with actual data. Such results are 
highly relevant input data for traffic modeling programs, for 
testing the efficacy of traffic control measures and for the input 
into GIS systems for traffic monitoring (Ernst et al. 2005). The 
paper shows how these data are acquired and evaluated. 
 

2. AERIAL IMAGE DATA AND GROUND 
REFERENCE 

 
The analog aerial images were recorded on October 5, 2004 by a 
ZEISS RMK A30/23 mounted on a DLR aircraft. The regions 
covered are along the A99 and A9 freeways north of Munich (see 
fig. 1) and another part of the A9 freeway south of Nürnberg. The 
time difference between two consecutive images is about 2.9 sec. 
The A99 area is covered by 37 images and the A9 area north of 
Munich by 43. The images were acquired from an altitude of 
2,500 m and scanned to a pixel resolution of 0.16 m.  
 
The reference data sets for these image data are as follows: 

 
• Data from overhead radar sensors recording velocities of 

single cars at four locations with a nominal accuracy of 3 
km/h 

• Two cars with DGPS tracking, reaching an accuracy of 
about 3 km/h standard deviation 

• Orthoimages from the Bavarian Land Surveying Office 
(point location accuracy given: 1-2 m)  

• Navteq data set containing information on streets and their 
properties like location, velocity limitation, etc. 

 
A second data set was generated by a conventional digital frame 
camera, which acquired images from the Munich “Olympic 
Tower” at an altitude of about 200 meters above a main city 
freeway. In this case the image repetition rate was on the order of 
0.5 sec but was not determined very accurately. This data set was 
used without reference, to test new methods of automatic car 
detection and tracking. 
 
 

3. PROCESSING OF THE AERIAL IMAGE DATA 
 
The geometric resolution was first reduced to a pixel size of 50 cm 
x 50 cm, since this resolution is high enough to measure single 
cars and the smaller digital images are much easier to handle.  
 
3.1 Image matching and orientation 
 
Since the inertial navigation system (INS) for the analog camera 
was not working nominally, the exterior orientation of the images 
had to be achieved using ground control points (GCP). To 
minimize manual interaction, a digital image matching of several 
consecutive images (~12) was performed first (Lehner et al. 
1992). This method allows automatic matching and mosaicking 
with subpixel accuracy for images which contain large 
overlapping areas (in this case the overlap is 88% in flight 
direction). All images treated with this method exhibit very 
similar geometries. Due to the change of parallaxes this method is 
not exact but quite accurate for streets with low slope. The 
absolute orientation is calculated for this image set using one set 
of GCP from a high resolution orthoimage, and the single images 
are registered accordingly. The accuracy achieved by this method 
depends first on the orthoimage accuracy (GCP), which is given to 
1-2 m. The standard deviations of the residual distortions at the 
GCP after transformation with a second order polynomial are 
shown in table 1, which is in the same order. 
 

Freeway A99 σ0 in X-Direction 
[m] 

σ0 in Y-Direction 
[m] 

Part_1, 12 images 1.15  1.63 

Part_2, 12 images 1.30 1.25 

Part_3, 12 images 1.05 0.72 

 
Table 1. Standard deviation for the residual deviations for every 

12-image combination 
 
Both DGPS tracking vehicles appear in five of the images 
showing the Nürnberg area. These images were also 
georeferenced using the method described above. Then the 
positions of the vehicles were manually measured. A comparison 
of these positions with the position calculated via DGPS showed a 
bias of 0.9 m in the images and a standard deviation of 1.2 m. This 
demonstrates that the orientation accuracy of the aerial images is 
of the same order of magnitude as that of the orthoimages: 1-2 m. 
 
The digital frame camera data were similarly matched and show a 
very high level of overlay accuracy, as will be shown in section 4. 
 
3.2 Velocity derivation and comparison 
 
After the rectification process, the position of the vehicles can be 
measured in each image. Due to the relatively long time between 
two images (~2.9 sec) automatic tracking is difficult since a car 
with a velocity of about 100 km/h moves about 80 m in this time 
period. Since a dense traffic flow implies car distances of about 1 
– 2 sec distance, automatic procedures like those mentioned in 
(Ernst et al. 2003) are not applicable. Therefore, manual 
measurements of vehicle positions were performed, which led to 
100% detection accuracy. Figure 2 shows an example of the 
visualizer tool developed for this purpose, which allows a 
manual/visual easy and fast tracking of single vehicles.  

 

Figure 1. Test sites north of Munich 



A very sensitive parameter in the velocity measuring process is 
the exact time between the two data acquisitions. An error of 0.1 
sec implies a distance error of 3 m when traveling at a speed of 30 
m/sec. The image acquisition time was estimated therefore to an 
accuracy of about 0.02 sec (Pötzsch 2005). The velocity 
estimation is therefore mainly dependent on the local accuracy of 
the rectified images, which is on the order of 1-2 m (and implies a 
velocity accuracy of about 3 km/h) and on the acceleration of the 
car during the 2.9 sec time span, which can be significant in cases 
of large changes in velocity. Table 2 compares the velocities 
derived by this method with the results of the DGPS measurement. 
 

 

Velocity 
from DGPS 

(km/h) 

Velocity  
from image 

(km/h) 
Difference 

(km/h) 
Vehicle 1    

Images 2/3 88.3 92.3  4.0 
Images 3/4 87.7 89.0  1.3 
Images 4/5 86.2 82.3 -3.9 
Images 5/6 85.1 87.7  2.6 
Images 2-6 

(mean velocity) 86.9 87.6  0.7 
    

Vehicle 2    
Images 2/3 86.0 90.0  4.0 
Images 3/4 87.6 87.9  0.3 
Images 4/5 88.6 85.0 -3.6 
Images 5/6 87.8 90.4  2.6 
Images 2-6 

(mean velocity) 87.3 88.1  0.8 
 

Table 2: Comparison of velocities derived from DGPS and aerial 
images 

 
The maximal difference in velocity is 4 km/h, which is within the 
law of error for the two independent measurements. If one 
considers the velocity over a longer period, namely over the 
stretch that can be covered in about 15 seconds, then the 
discrepancy is below 1 km/h. It should be noted that the 
discrepancy for both vehicles in the respective images is quite 
similar. This is because the image overlay was not exact (see table 
1), and can lead to the same systematic effect on the velocities of 
all vehicles. 
 

The second comparison concerns the overhead radar detectors at 
four different places (signboard bridges) along the A9 and A99 
freeways. On every signboard bridge there are several detectors 
for each track. The accuracy of the radar sensors, which were 
calibrated in the laboratory, was specified to ~3 km/h and a similar 
accuracy is expected with the image tracking procedure. In order 
to compare the two data sets an accurate visual interpretation is 
necessary since the velocity data from the radar sensors is only 
given with full seconds and the measurement takes place when the 
vehicle is at a distance of about 20 m from the bridge. Figure 3 

shows three subsequent images with individual cars numbered. 
Several overtaking maneuvers are visible and often more than one 
car passes within one second. The results of the comparison vary 
for the different measuring locations. Table 3a shows an expected 
result with relatively low differences, while table 3b shows a 
result with a large difference. In all cases the standard deviations 
are higher than expected. 
 

Sensor 
 

Mean deviation 
[km/h] 

σ0 [km/h] 

Track 1 4.4 7.6 

Track 2 5.5 7.8 

Track 3 3.4 5.8 

Mean (3 tracks) 3.9 6.8 
Table 3a: Comparison of velocities derived from radar sensors and 

aerial images (Bridge: AQ 92/610) 
 

Sensor Mean deviation 
[km/h] 

σ0 [km/h] 

Track 1 2.5 4.7 

Track 2 11.7 8.2 

Track 3 12.7 8.3 

Mean (3 tracks) 9.4 7.3 
Table 3b: Comparison of velocities derived from radar sensor and 

aerial images (Bridge: AQ 9/370) 
 

 
Figure 2. XDibias visualizer to measure vehicles in 

subsequent images 

 
Figure 3. Three subsequent images with a signboard bridge 

(arrow) and several overtake maneuvers 



It is not easy to explain this behavior. After discussion with the 
freeway authority, it is thought to be caused by poorly adjusted 
sensor orientation of the radar equipment. The calibration was 
only performed in the laboratory but not “on location”. Even small 
changes in height or viewing angle will result in a large change of 
the velocity values. The results in figure 4, which imply 
systematic behavior, always measuring lower velocities with the 
radar sensors, could also be explained by the above mentioned 
reasoning. A linear regression between the two values leads to a 
slope of 0.8 and a linear regression coefficient of 0.93. 

The measured accelerations between each set of three images 
show typical values of increasing and decreasing speed on a 
freeway. With normal traffic flow, as observed during these 
measurements, accelerations are typically between ±0.5 m/s²; only 
in a few cases like starting overtakes or entering or exiting the 
freeway, does acceleration go up to 3 m/s² or even higher. 
 
3.3 Navteq integration 

 
In order to use the derived traffic parameters in a larger context, 
e.g., for simulations or traffic control, the data have to be stored in 
a traffic database. For this reason there is a need for automatic 
integration of the values to a common base of street lines. One of 
these street databases has been produced by the NAVTEQ 
Company (Navteq 2004). The streets are given by polygons which 
consist of piecewise linear “edges,” grouped as “lines” if the 
attributes of connected edges are the same. With this data set it is 
possible to calculate mean traffic density or velocity per edge/line 
for a certain time span. The accuracy of the Navteq database was 
first tested to see whether automatic assignment algorithms would 
be suitable. In the case of freeways the accuracy is quite high 
(only few m to the road/track center), while for some of the 
smaller streets, the absolute deviation can be on the order of 20 
meters or more. There is no general statement possible about 
which streets are how accurate, but since the more interesting 
traffic performs on more frequently used streets, the NAVTEQ 
data set is very suitable for the mentioned application. With a 
simple algorithm which uses the perpendicular distance of the 
vehicle coordinates to the single edges, more than 95% of the cars 
could be assigned correctly. Only in the case of street crossings 
(including bridges) and freeway exits some errors appear due to 
wrong street assignment, which can be eliminated using 
algorithms containing the propagation direction of the vehicle. 
Table 4 shows typical distances in the automatic assigning 

algorithm. By this assignment a database could be established 
which can be used for traffic simulation studies or traffic flow 
investigations. 
 

Vehicle Nr. 

Distance to 
Navteq data 

(m) 

Velocity  
from image 

(km/h) 
001 3.4 85.5 
002 1.2 88.8 
003 0.5 81.8 
004 3.6 135 
005 3.8 89.0 
006 0.5 87.1 
007 2.5 121 
008 2.3 85.2 
009 5.0 150 
010 6.9 83.8 
011 2.0 118 
012 2.2 128 
013 0.7 71.9 

 
Table 4. Distance from image data to Navteq data and velocities 

for one “Navteq-edge” 
 
The traffic flow can be also visualized by interpolating the vehicle 
positions and color coding the single cars according to their 
velocity. With the background of the NAVTEQ data set, the 
assignment can be seen directly. Figure 5 shows a snapshot of the 
animation of real traffic flow on the Munich-North freeway 
interchange. 
 

4. AUTOMATIC DETECTION OF CARS 
 
Manually determining vehicle positions is not satisfactory in the 
long run, therefore, some experiments were carried out to achieve 
automatic detection of moving objects. First results are given in 
this section. The described algorithm is based on a series of 
images taken over an interval of about 0.5 second by a normal 
digital camera placed on Munich’s Olympic Tower and aimed at 
the city freeway, as can be seen in figure 6. The primary purpose 
of the research was automatic detection of vehicles and extraction 
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Figure 4. Velocity comparison for single vehicles measured 
with radar sensors and aerial images (linear regression for 

60 cars at two signboard bridges) 

 
Figure 5. Clipping from a film animation showing moving 

vehicles on a freeway interchange north of Munich, 
blue=slow vehicles, orange=fast vehicles 



of their velocities. Surprisingly, many individual pedestrians on 
the images were also detected with their velocities. 

In the first step all images were exactly mapped on the first image 
by the same matching procedure mentioned in section 3. Out of all 
these images a median image was created which does not contain 
the moving objects, as shown in figure 7. Next a difference image 
between each mapped image and the median image was 
calculated. These difference images were averaged over a radius 
of four pixels and the lower 20 % of grey values were cut off to 
eliminate noise.  

 
Applying a modified Laplace operator which averages slopes over 
a region of ±10 pixels detects the borders of objects. Filling these 
borders creates objects with specific areas. Taking into account 
only objects within a specific interval of areas (in the examples 
from 50 to 800 pixels) yields detected objects, as can be seen in 
figure 8. In the last step the areas of the objects detected in every 
single picture were correlated pixel for pixel between every two 
consecutive original images. Therefore, an object detected in one 
image is correlated with all objects detected in the following 
image. Correlations within a given quality number are taken as 
hits. The correlation is taken out within a small radius around the 
objects in the second image. These hits are drawn together with 
their movement and velocities as a vector layer to the first image 
(figure 9).  

 
As can easily be seen in figure 10 the objects are well correlated, 
and pedestrians were also detected if they were within the area 
defined for vehicles. Problems arise when too similar vehicles are 
in proximity. Adjusting the range of object areas and the quality 
number results in too few objects detected or too many 
mismatches found, which means that the receiver-operator curve 
(ROC) has to be observed carefully. The automatic method leads 
to detected car fraction of only 27% without generating false 
alarms. It rises up to 80% but generating in this case more than 
20% false alarms. This has to be reduced in future works. 
 

 
Figure 7. Median image created from all images of the 

series – showing no traffic on the city freeway at midday! 

 
Figure 6. The first image of the series used –as a grey level 

image 

 
Figure 8. Difference to the median image, leaving only 

moving objects as visible traces 

 
Figure 9. Object correlations found between the first two 

images and subsequently calculated velocities

 
Figure 10. Three well correlated objects in subsequent images 

 



5. DISCUSSION 
 
 
The investigations show that it is possible to derive high quality 
traffic data from image series recorded by airborne cameras. With 
an easy to use visual interpretation tool 100% of the vehicles can 
be detected with a velocity accuracy of about 3 km/h. These data 
can be used for verification of standard instrumentation, for 
analysis of the formation of traffic jams, and for input into traffic 
models and simulations.  
 
The automatic vehicle detection method leads to reduced car 
detection accuracies. This has to be improved by introducing 
constraints through the knowledge of the direction of the car 
movement. The interpretation works much faster but needs an 
image repetition frequency of at least 2 Hz. In any case the 
geometric identity of the overlapping images is a necessary 
prerequisite for high quality analysis. Future work will include the 
integration of the street database into the automatic algorithm and 
segmentation of the image into street and other classes. 
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